Trax Retaining Wall 4th street and Route 66 **CENE 486C Final Presentation** By: Wall E. Wallerson & Associates Inc. Chris Cook Josh Endersby Hunter Schnoebelen December 6, 2019

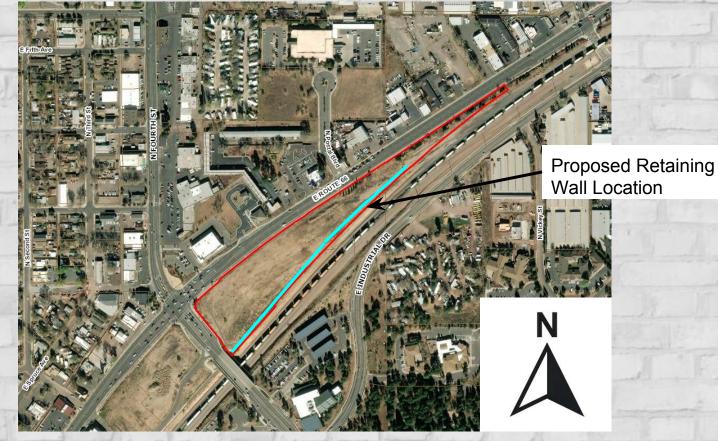
WEW

Project Purpose

Photo 1: Site image of the Project Parcel (looking East)

Project Purpose

The purpose of the project is to design a retaining wall for a proposed Holiday Inn that runs parallel with the railroad and proposed FUTS path.


Project Objectives

- Collect soil samples from project location.
- Conduct geotechnical testing and analysis on soil collected.
- Design 3 preliminary wall designs to present to client.
- Determine final wall design and create a construction plan and final cost.

Project Client: Steve Irwin Technical Advisor: Thomas Nelson

Project Location Continued

Soil Sampling Plan

- Soil was collected from a stockpile located on the North side of the parcel.
- Stockpile had heavy vegetation, gravel, sand, and clay.
- Equipment used to collect soil:
 - Shovel 0
 - Labeled 5 gallon buckets 0
 - Tape measure 0

Soil Collection

- The stockpile was broken up into 6 sections to collect 6 homogenous samples.
- 4 samples were collected to create 1 sample per section.
- Samples holes were about foot deep horizontally, and a foot in diameter.
- Soil was placed in the buckets to create 6 samples for testing.

Photo 4: 6 Sample Buckets

Photo 3: Sample Hole

Soil Sampling Map

Geotechnical Analysis and Testing

Soil Classification

- Soil Particle Size Distribution (ASTM D6913)
- Hydrometer (ASTM 7928-17)
- Atterberg Limits (ASTM D4318-17)
 - Liquid Limit
 - Plastic Limit
 - Plasticity Index

Unit Weight of Soil

Modified Proctor Compaction (ASTM 1557-12e1)

Soil Settlement

Consolidation (ASTM D2435)

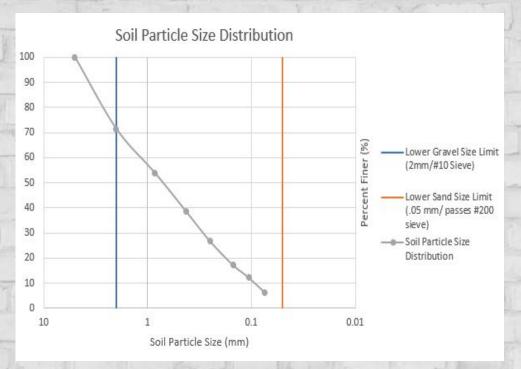
Friction Angle of Soil

- Unconsolidated-Undrained Triaxial Compression Test (ASTM 2850-15)
- Direct Shear (ASTM D3080)

ASTM INTERNATIONAL

Figure 4: ASTM Logo

Soil Particle Size Distribution- ASTM D6913 [3]



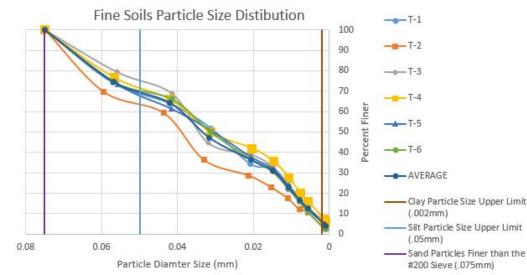

Figure 5: Granular (Greater Than #200 Sieve) Particle Size Distribution Curve

Table 1: Granular Particle Size Distribution

	Type of Soil	Sieve Number	Particle Size (mm)	Percentage (%)
	Gravel	10 > X	2 > X	28.53
-	Sand	10 > X > 200	2 > X > .05	67.07
T	Silt/Clay	X > 200	.05 > X	4.4

Photo 5: Sieve Stack

Particle Size Distribution of Fine-Grained Soils Using Sedimentation (Hydrometer) Analysis (ASTM 7928-17)

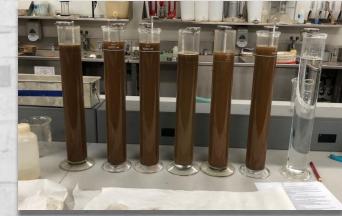


Photo 6: 6 Testing Samples and Control

Figure 6: Fine Soil Particles Distribution

Table 2. This constants as the contage of const assing the #200 blove								
Type of Soil	Sieve Number	Particle Size (mm)	Percentage (%)					
Sand	X > 200	X > 0.05	30.13					
Silt	X > 200	.05 > X > 0.002	63.5					
Clay	X > 200	0.002 > X	6.37					

Table 2: Fine Soils Contents as Percentage of Soils Passing the #200 Sieve

Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (ASTM D4318-17)

Table 3: Plastic Limit Results

Plastic Limit									
Moisture Can ID	T-1	T-2	T-3	T-4	T-5	T-6			
Mc (g)	19.5	13.3	19.8	13.6	13.2	13.3			
Mm (g)	31.6	25.2	27.5	24.2	31	22.4			
Md (g)	29.2	23.2	26	22.2	27.7	20.7			
w (%)	24.74	20.20	24.19	23.26	22.76	22.97			
PL (%)	24.74	20.20	24.19	23.26	22.76	22.97			
AVG PL (%)	23.02	±1.58							

Plastic Limit= 23.02% Liquid Limit = 24.92 % Plasticity Index = 1.9

Photo 7: Liquid Limit Testing (Casagrande Cup)

Soil Classification (AASHTO System)

Figure 5.3 Flow chart for soil classification using the AASHTO system. Classification Classification Soil Description Method Description Highly organic No Gravel Sand/ Fine AASHTO A-1-b , A-3 % passing #200 sieve ≤ 35 Yes No Sand % passing #10 sieve $\leq 50^{3}$ No Welly Graded USCS ML, SW % passing #40 sieve ≤ 30 4 Sand with Gravel No \rightarrow % passing #40 sieve ≤ 50 5 % passing #200 sieve ≤ 15 $I_{\rm P} \leq 6$ Yes No USDA N/A Sand Yes % passing #200 sieve ≤ 10 7 passing #200 sieve ≤ 25 $I_{\rm P} \le 10$ 8 Table 5: Soil Percentage Breakdown $I_{\rm P} \leq 6$ Fines are non-plastic Yes Yes No Yes Particle Size $w_{\rm L} \le 40 \, \frac{10}{10}$ $w_{\rm L} \le 40^{11}$ Type of Soil Percentage (%) $I_{\rm P} \le 10$ 9 (mm) Yes Yes No Yes $w_{\rm L} \le 40 | 12$ $I_{\rm P} \le w_{\rm L} - 30^{14}$ Gravel 2 > X 28.53 Yes Yes No Yes No Sand 2 > X > .0565.11 (A-1-b) (A-1-a) (A-2-4) (A-3) (A-4) A-5 A-6 (A-7-5) (A-7-6) (A-8) A-2-5) (A-2-6) (A-2-7) Stone fragments; Fine Peat or Silty or clayey gravel & sand Silty soils Clayey soils gravel & sand sand muck Silt .05 > X > 0.0025.8

Clay

Figure 7: (Above): AASHTO Flow Chart for Soil Classification (Gravel not excluded)

11

0.56

Table 4: All Classification System Results

0.002 > X

Laboratory Compaction Characteristics of Soil using Modified Effort (56,000 ft-lbf/ft^3 (2,700 kN-m/m^3)) (ASTM1557-12e1)

Table 8 (below): Modified Proctor Compaction Tabular Results

Modified Proctor Compaction- Average

Trial	1	2	3	4	5	TH		
moisture content %	0.04	0.082	0.116	0.163	0.201			
Std Dev Moisture Content	0.003	0.012	0.005	0.006	0.009	14		
weight of compacted soil (g)	1571.9	1675.7	1803.6	1919.3	1845.2			
moist unit weight (kg/m^3)	1667.6	1777.8	1913.6	2036.2	1955.3	-		
dry unit weight (kg/m^3)	1588.1	1619.7	1684.6	1751.2	1628.6	1		
Std Dev Dry Unit Weight	23.3	17.8	14.8	21.1	11			
Optimal dry unit weight (kg/m^3)	1752							
Optimal dry unit weight (lb/ft^3)	109.37							

Photo 8: Compacted Soil Specimen

Consolidation-ASTM D2435

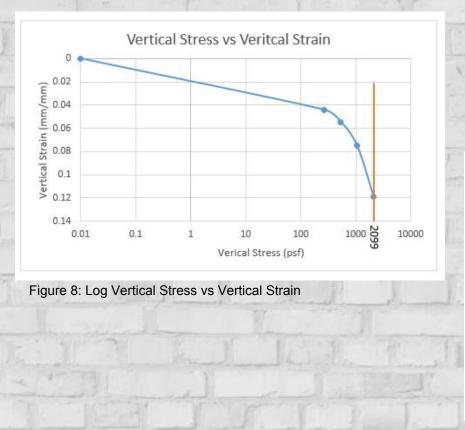


Photo 10: Testing Equipment

Photo 9: Sample After Testing

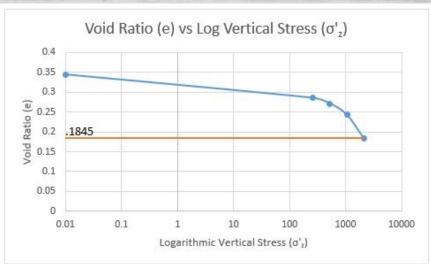


Figure 9: Void Ratio Compared to Applied Vertical Stress

Direct Shear-ASTM D3080

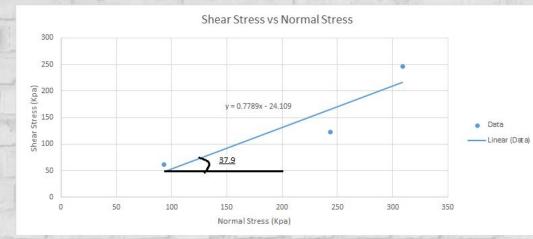


Figure 10: Friction Angle Determination

- Friction angle = 37.9
- Unconsolidated-Undrained Triaxial Compression test completed with inconclusive results

Photo 11: Direct Shear Testing Equipment

Photo 12: Testing Device

Heavy Metals Test Results:

Table 9: XRF Possible Soil Contaminant Results

Contaminant	Detected Average (ppm)	Error (ppm)	**Threshold (ppm)
Strontium (Sr)	432.736	6.273	47000
*Molybdenum (Mo)	4.65	3.823	390
*Cadmium (Cd)	11.57	9.281	39
*Tin (Sn)	10.999	5.459	47,000
*Anitmony (Sb)	23.497	8.543	31
*Mercury (Hg)	8.94	7.887	23
*Uranium (U)	6.78	6.263	16
Lead (Pb)	30.285	4.815	400
*Arsenic (As)	9.545	3.972	10
Titanium (Ti)	6108.038	110.705	310,000
Vanadium (V)	117.1	26.518	78
Cromium (Cr) III	37.968	9.311	120,000
Manganese (Mn)	876.202	62.398	3300
*Cobalt (Co)	165.05	144.583	900
Nickel (Ni)	62.642	16.319	1600
Copper (Cu)	45.801	12.335	3100
Zinc (Zn)	101.065	9.23	23,000

Table 10: Associative Notes for Table 9							
Symbol	Note						
*	These elements had samples which did not meet the minimum limit of detection (LODs), an thus were not accounted for in the average.						
**	Arizona Admin. Code for Residential Limits of Remediation						

Wall Option Screening Decision Matrix

Table 10: Seven Wall Preliminary Decision Matrix

Table 11: Decision Matrix Key

		Concrete	Reinforced	Anchored	Mechanically					Decision Matrix Key
Decision Matrix Criteria	Concrete Gravity Wall	Cantilever	Concrete Cantilever Wall	Retaining Wall	Stabilized Earth	Concrete Masonry Unit	Geotextile Wall		Point /alue	Description
Foundation Size (6 inch restriction)	-1	0	0	1	1	-1	0		-1	The wall does not meet the teams requirements and is not practical for wall size or construction.
Required Reinforcement (Amount needed)	1	1	-1	-1	0	1	0			The wall does not have a negative or positive impact on the surroundings.
Wall Aesthetics (Doesn't stand out)	-1	0	0	-1	1	1	1		0	The wall will meet requirements, but is not the best option.
Estimated Construction Time	1	0	0	-1	-1	1	-1	Ē	1	The wall exceeds expectations and is practical for design in this category.
Sum	0	1	-1	-2	1	2	0			Selected walls for design.

Design Alternatives Overview

Concrete Cantilever Retaining Wall

- Cast-in-place wall that uses concrete and rebar reinforcements.
- Utilizes normal weight concrete.

Mechanically Stabilized Earth Retaining Wall

- Composite structure consisting of alternating layers of backfill that is compacted with soil reinforcement that ties to the back of the wall.
- Reinforcement is the attached to a wall facing to retain soil.

Concrete Masonry Unit Retaining Wall

- A mixture of a concrete foundation and a CMU block facing.
- Uses rebar through out both CMU and concrete foundation.

Preliminary Concrete Cantilever Retaining Wall

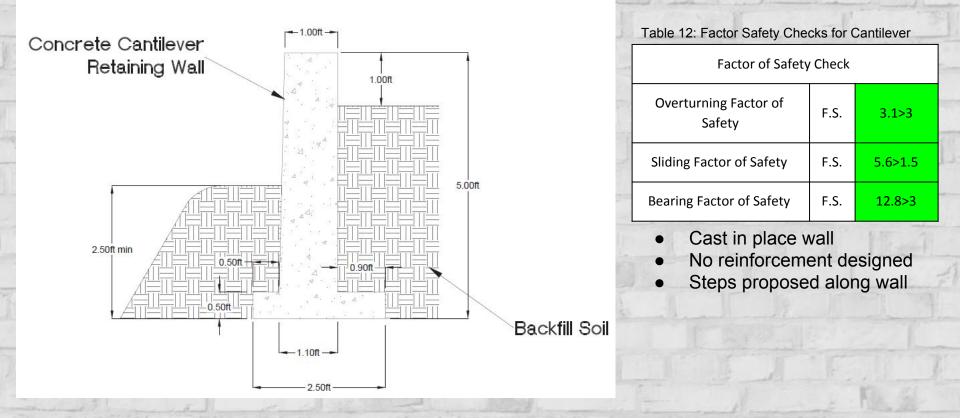


Figure 11: Concrete cantilever retaining wall cross-section

Preliminary Mechanically Stabilized Earth Retaining Wall Design

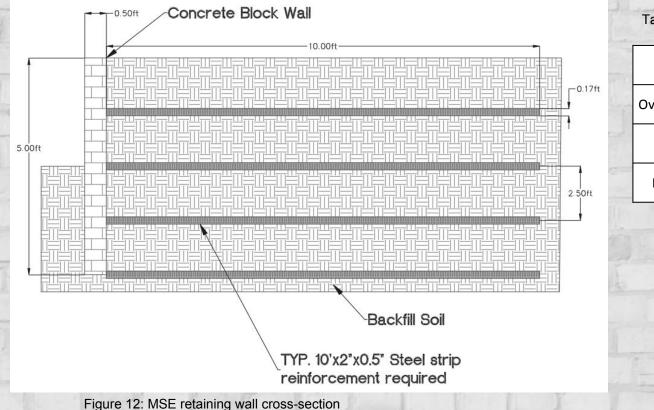


Table 13: Factor of Safety checks for MSE Wall

Factor of Safety Check						
Overturning Factor of Safety	FS	24.5 > 3				
Sliding Factor of Safety	FS	3.9 > 3				
Bearing Factor of Safety	FS	48 > 5				

- Mechanically Stabilized Earth (MSE)
- Steps proposed along wall

Preliminary CMU Retaining Wall Design

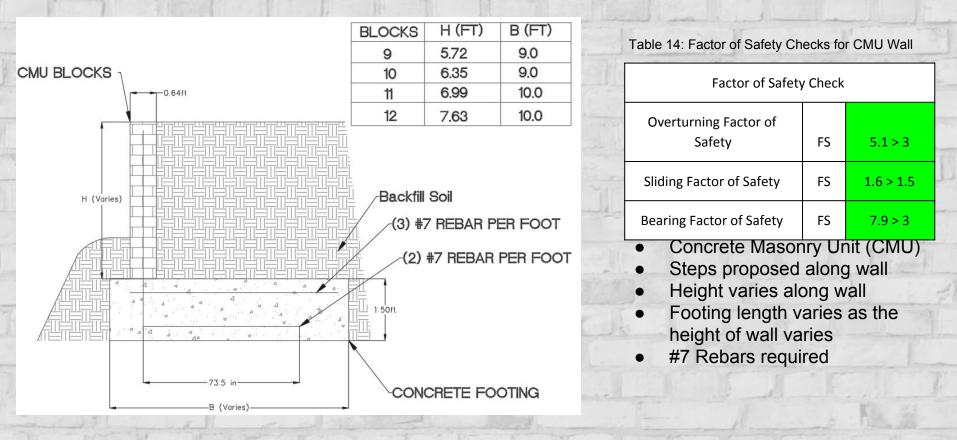
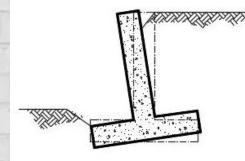


Figure 13: CMU retaining wall cross-section

Preliminary Retaining Wall Designs Decision Matrix

Table 15: Final wall selection decision matrix


Desision Matrix Criteria	Concrete	Mechanically	Concrete	
Decision Matrix Criteria	Cantilever Wall	Stabilized Earth	Masonry Unit	- Alexander
Drainage Natural and with the ability to add weep holes.	1	1	1	Concrete Masonry Unit (CMU)-
Foundation Size Size of foundation as the wall is restricted by the railroad and the FUTS trail for proposed Holiday Inn	0	1	0	• Foundation Size- Large, however, fits within project restrictions.
Required Reinforcement How much reinforcement is required to build the wall based on cost and the ability for contractor to implement	1	0	0	Wall Aesthetics- Wall is common in Flagstaff, matches
Wall Aesthetics How the wall blends with natural surroundings and infrastructure	-1	0	1	existing
Estimated Material Cost The overall cost of materials for the contractor to build the 1500 ft wall	1	-1	0	 Material Cost/Construction Time- Materials like CMU blocks are local to Flagstaff, and common wall building
Estimated Construction Time The time it takes to construct the wall and the man hours that are required to implement the wall	-1	0	1	material.
Sum	1	1	3	and a second sec

21

Factor of Safety Design Check: Bearing Capacity

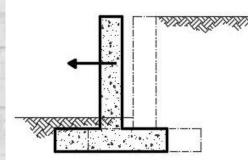
Table 16: CMU Bearing Capacity Check

	# of Blocks	Height of Blocks (feet)	Total Height of Wall (feet)	Base Dimension of Footing (feet)	Depth of Footing (feet)	Factor of Safety (Bearing) ≥2	
1	12	7.63	9.13	10	5	10.17	21 L.S.
-	11	6.99	8.49	10	5	10.59	
	10	6.35	7.85	9	5	8.55	
1	9	5.72	7.22	9	5	8.82	1

Factor of Safety Design Check: Overturning

Table 17: CMU Overturning Check

# of Blocks	Height of Blocks (feet)	Total Height of Wall (feet)	Base Dimension of Footing (feet)	Depth of Footing (feet)	Factor of Safety (Overturning) ≥3
12	7.63	9.13	10	5	3.56
11	6.99	8.49	10	5	3.68
10	6.35	7.85	9	5	3.09
9	5.72	7.22	9	5	3.19


うとうたくろんないちょうちょう AMAN MARKER

OVERTURNING

Factor of Safety Design Check: Sliding

Table 18: Decision Matrix Key

# of Blocks	Height of Blocks (feet)	Total Height of Wall (feet)	Base Dimension of Footing (feet)	Depth of Footing (feet)	Factor of Safety (Sliding) ≥1.5
12	7.63	9.13	10	5	2.16
11	6.99	8.49	10	5	2.16
10	6.35	7.85	9	5	2.06
9	5.72	7.22	9	5	2.06

SLIDING

Wall Alignment

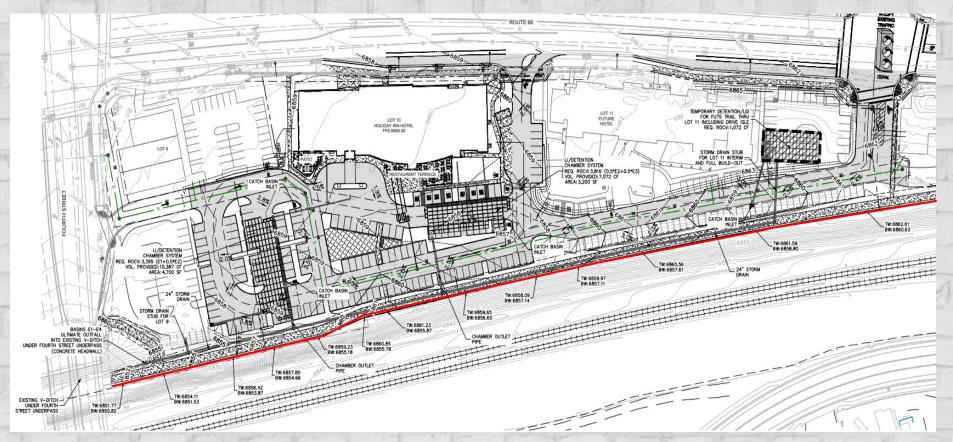
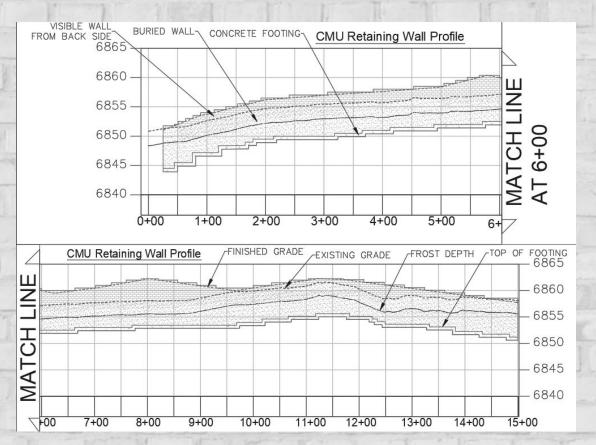


Figure 17: Grading and Drainage of the Proposed Construction of the Parcel. (Received from Shephard Wesnitzer Inc.)

Profile View of Final CMU Wall Design



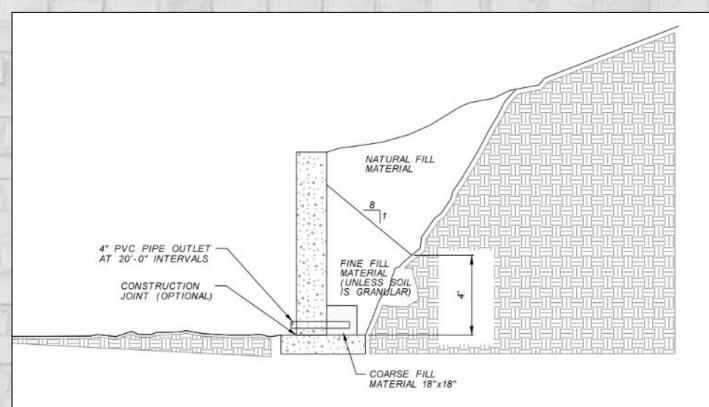


Figure 19: CMU Blocks

- Top and bottom steps occur at different stations
- Height of wall varies along the profile
- Footing maintains 1.5' thick and is below the frost depth
- Profile hatch shows the visible wall from the back side
- FUTS handrail proposed on top of the wall per City of Flagstaff Standard Detail 14-01-010

Figure 18: CMU retaining wall profile

Weep Holes

Drainage for the wall will use the Maricopa design detail, as shown in Figure 16.

Weep holes:

- 4" PVC
- Spaced 20'-0" intervals
- Coarse material will be determined as a gravel or course sand.

Figure 20: Maricopa Standard detail for a retaining wall [6]

Impacts

Environmental

- Concrete is a primary producer of CO2 and produces greenhouse gases. (Concrete footing)
- Construction process of the wall will cause waste and temporary pollution on to surrounding population.

<u>Social</u>

- Flagstaff Urban Trail System (FUTS) path extension with handrail on top of wall to provide safety for pedestrians.
- Increase in FUTS trail use.
- Decreased amount of traffic around Northern Arizona University.

<u>Economic</u>

- Support local masonry block manufacture in Flagstaff using CMU for wall construction
- Local contractors for wall construction.
- Increase in growth for 4th Street and Route 66 local Flagstaff businesses and surrounding businesses.

EOPC - Engineers Opinion of Probable Cost

Table 19: EOPC Cost Estimate

EOPC- Engineering Opinion of Proposed Construction							
Item Number	Quantity	Units	Description of Item	Unit Cost	Cost		
			Dirt Excavation and Demolition				
1	\$2,778	CY	Dirt Excavation and Removal	\$25	\$69,444		
				Total	\$69,444		
	Retaining Wall Proposed Cost and Items						
2	\$833	CY	Concrete for Foundation	\$750	\$624,750		
3	\$38,063	LF	#7 Rebar	\$15	\$570,938		
4	\$10,500	SF	Unit Masonry Assemblies (Split Face 8" Thick)	\$56	\$588,000		
5	\$1,500	LF	Cost of FUTS Handrail	\$95	\$136,500		
6	\$75	LF	PVC Pipe for Weep holes (4")	\$2	\$150		
7	\$3,375	CY	Granular Coarse Fill (18'X18") along wall	\$25	\$84,375		
				Total	\$2,004,713		
				Total Cost:	\$2,074,157		

*All estimates were determined off of ADOT Bid Numbers (Estimated engineering construction cost C2E2)

<u>Project Hours</u> (Proposed vs Actual)

Table 20: Proposed Staffing Hours

Task	Hou	Hours Per Staff Member				
	Sr. ENG	Assoc. ENG	EIT			
1.0 Site Investigation	3	3	3	9		
2.0 Field Sampling						
2.1 Field Work Plan	1	1	7	9		
2.2 Field Work	1	9	20	30		
3.0 Geotechnical Analysis						
3.1 Sieve Analysis	1	2	15	18		
3.2 Hydrometer	1	2	15	18		
3.3 Atterberg Limits	1	2	15	18		
3.4 Sand-Cone Test	1	2	15	18		
3.5 Tri-axial	1	2	15	18		
3.6 Consolidation	1	2	15	18		
4.0 Hydrology	4	12	32	48		
5.0 Hydraulics	3	9	24	36		
6.0 Wall Design Process						
6.1 Wall Designs	4	48	38	90		
6.2 Plan and Profiles	1	1	7	9		
6.3 Final Wall Design Selection	2	6	1	9		
7.0 Impacts	3	3	3	9		
8.0 Project Management	64	78	131	273		
PROJECT TOTALS	92	182	356	630		

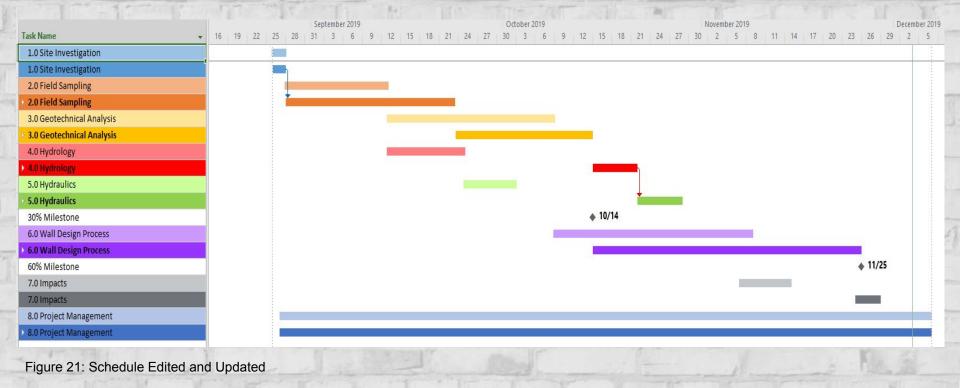
Table 21: Actual Staffing Hours

Actual (si	um of all hours	per position)			
Task	Hou	rs Per Staff N	lember	Total Hours	
	Sr. ENG	Assoc. ENG	EIT		
1.0 Site Investigation	1	1	1	3	
2.0 Field Sampling					
2.1 Field Work Plan	2	1	9	12	
2.2 Field Work	0	0	5.5	5.5	
3.0 Geotechnical Analysis					
3.1 Sieve Analysis	0	2	8	10	
3.2 Hydrometer	3	1	10.5	14.5	
3.3 Atterberg Limits	0	2	9	11	
3.4 Sand-Cone Test	4	2	8	14	
3.5 Tri-axial	3	9	13	25	
3.6 Consolidation	3	5	14.5	22.5	
3.7 XRF Contaminats Test	0	0	6	6	
3.8 Direct Shear	0	0	7	7	
4.0 Hydrology	0	2	10	12	
5.0 Hydraulics	0	0	6	6	
6.0 Wall Design Process					
6.1 Wall Designs	6	15.5	24	45.5	
6.2 Plan and Profiles	0	5	15	20	
6.3 Final Wall Design Selection	0	0	4	4	
7.0 Impacts	0	0	0	0	
8.0 Project Management	39.5	67.5	111	218	
PROJECT TOTALS	61.5	113	261.5	436	

Engineering Summary of Cost

Table 22: Proposed cost of	engineering service
----------------------------	---------------------

Item	Description	Cost per Unit	Number of Units	Units	Cost
	Sr. Eng.	\$200.00	92	Hours	\$18,400.00
1.0 Personnel:	Assoc. Eng.	\$140.00	182	Hours	\$25,480.00
1.0 Personnel:	EIT	\$90.00	356	Hours	\$32,040.00
	Total Personnel:				\$75,920.00
2.0 Supplies:	Lab Rental	\$100.00	108	Hours	\$10,800.00
3.0 Total		5. 2			\$86,720.00


Table 23: Actual cost of engineering service

Item	Description	Cost per Unit	Number of Units	Units	Cost
	Sr. Eng.	\$200.00	67.5	Hours	\$13,500.00
1 0 Demonstra	Assoc. Eng.	\$140.00	126	Hours	\$17,640.00
1.0 Personnel:	EIT	\$90.00	282.5	Hours	\$25,425.00
	Total Personnel:				\$56,565.00
2.0 Supplies:	Lab Rental	\$100.00	42.5	Hours	\$4,250.00
3.0 Total					\$60,815.00

Schedule

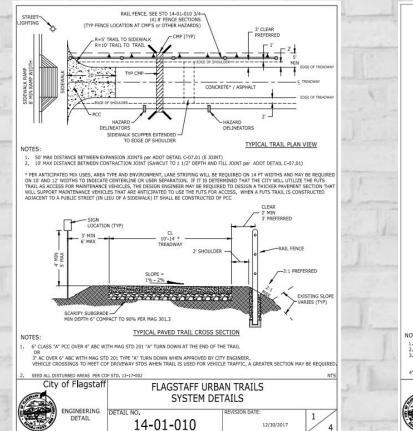
Proposed schedule tasks located above with lighter color

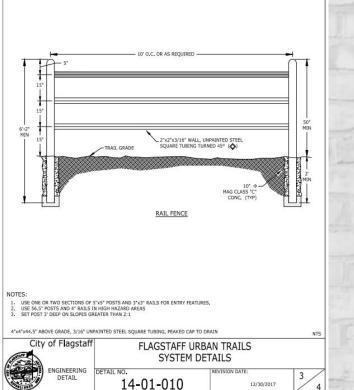
Actual schedule tasks located below with darker color

References

[1] Gismaps.coconino.az.gov. (2019). Coconino Parcel Viewer. [online] Available at:

https://gismaps.coconino.az.gov/parcelviewer/ [Accessed 25 Feb. 2019].


[2] Earth.google.com. (2019). *Google Earth*. [online] Available at: https://earth.google.com/web/ [Accessed 25 Feb. 2019].


[3] Compass.astm.org. (2019). *ASTM International - Compass Login*. [online] Available at: https://compass.astm.org/EDIT/html_annot.cgi?D4767+11 [Accessed 28 Feb. 2019].

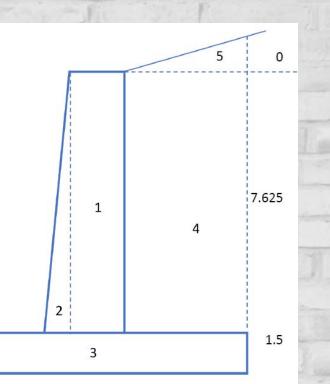
[4] N. Braja M. Das, Principles of Foundation Engineering, 9 ed., Boston, Massachusetts: Cenage, 2017.
[5] Arizona Department of Environmental Quality, "Department of Environmental Quality - Remedial Action," 31 March 2009. [Online]. Available: <u>https://apps.azsos.gov/public_services/Title_18/18-07.pdf</u>.
[6] Standard Procedures & Details | Maricopa County, AZ", *Maricopa.gov*, 2019. [Online]. Available: https://www.maricopa.gov/624/Standard-Procedures-Details. [Accessed: 16- Oct- 2019].
[7]"StreamStats", *Streamstats.usgs.gov*, 2019. [Online]. Available: https://streamstats.usgs.gov/ss/.

Questions?

FUTS Railing Standards

35

Reinforcement Calculations


	16413.036	M (lb-ft/ft)
-	16.413036	M (kip-ft/ft)
1.	3.4	la (in)
	1.072747451	As (in^2)
	0.865906569	J
1	3.463626275	la (in)
	1.053041248	As (in^2)
1	in everv cell	one #7 rebar

qmin (psf)	158.015
qmax (psf)	2100.208
m	194.2193
q (psf)	1879.68817
P1 (lb/ft)	2134.229276
P2 (lb/ft)	125.1909453
P (lb/ft)	2259.420221
x (ft)	0.567708333
Ma (lb-ft)	1282.691688
M (lb-ft)	2052.306701
M (kip-ft)	2.052306701
la (in)	11.9
As (in^2)	0.038325055
a (in)	0.0901766
J	0.996779407
la (in)	13.9549117
As (in^2)	0.032681551
Rebar n	ot needed

		17.
-	qmin (psf)	158.015
	qmax (psf)	2100.208
10.	m	194.2193
1	q (psf)	1879.68817
124	P1 (lb/ft)	1400.737135
100	P2 (lb/ft)	7630.957643
inter-	P (lb/ft)	9031.694779
	x (ft)	2.5
Sec.	Ma (lb-ft)	57482.97406
- la	M (lb-ft)	91972.7585
l.	M (kip-ft)	91.9727585
	la (in)	11.9
1	As (in^2)	1.71751183
1	a (in)	4.041204306
1	J	0.855671275
	la (in)	11.97939785
	As (in^2)	1.706128391
A. W	3 #7 reba	ar per foot

36

Tallest Wall Design Equation List

	St. 199	Formula	5	Notes
1	Rankine Coeffiecient of Active Pressure	ka =	tan2(45-ф'/2)	1.1.1.1
2	Active Stress	σ'a =	γ*H*ka	C=0
3	Resultant Active Pressure	Pa=	σ'a *H*.5+Pq	
4	Applied Vertical Pressure of Soil	Pv=	Pa*sin(a)	
5	Applied Horizontal Soil Pressure	PH =	Pa*cos(α)	
6	Factor of Safety for Overturning	FS overturn=	Mr/Md ≥ 2	
7	Sum of Resistive Forces	Mr=	ΣV*(Marm)+Pv*(Marm)	
8	Driving Moment	Md=	PH*(H/3)	
9	Net Moment	MN=	Mr-Md	
10	Factor of Safety for Sliding	FS Sliding=	Fr/Fd ≥ 1.5	
11	Resisting Force	Fr=	fr+fc+PP	fc=0
12	Driving Force	Fd=	PH	
13	Resultant Force of Pv and Sum of Weight	fr=	(Pv+ΣV)*tanδ	
14	Soil-Pile Friction Angle	δ=	2/3*ф'	
15	Coefficient of Friction	Coefficient=	tan(δ)	
16	Resultant Passive Pressure	PP=	σ'P/2*Df	
17	Passive Stress	σ'P =	kP*γ*Df	C=0
18	Rankine Coefficient of Passive Pressure	kP=	tan2(45+\$\$'/2)	
19	Factor of Safety for Bearing	FS Bearing=	qu/qmax≥3	
20	Bearing Pressure on Toe	qmax =	ΣV/B*(1+6e/B)	
21	Eccentrictiy of Load	e=	B/2-MN/ΣV	
22	Bearing Pressure on Heel	qmin=	ΣV/B*(1-6e/B)	
23	Unconfined Compressive Strength	qu=	c'*Nc*Fcd*Fci+q*Nq*Fqd*Fqi+0.5*y*B'*Ny*Fyd*Fyi	
24	Bearing Pressure	q=	v*D	
25	Effective Base Dimension	B'=	B-2*e	
26	Cohesion	c'=	0	
27	Bearing Capacity Factor	Nc=	60.78	
_	Bearing Capacity Factor	Ng=	48.33	For $\phi' = 37.9$ degrees
	Bearing Capacity Factor	Ny=	76.85	(values interpolated)
	depth Factor	Fcd=	Fqd-[(1-Fqd)/(Nctan(\phi'))]	
_	depth Factor	Fyd=	1	For Df/B≤1 and φ'>
	depth Factor	Fgd=	1+2tan¢'(1-sin¢')2Df/B	
100.00	Contraction of the second statement reads			
	Angle of soil at top of wall	β=	arctan(PH/ΣV)	
	Inclination Factor	Fci=Fqi=	(1-β/90)2	For β=29.93 degrees
	Inclination Factor	Fyi=	(1-β/φ')2	
	Weight of Area 1	V1=	A1*y (concrete)	
37	Weight of Area 2	V2=	A2*γ (concrete)	
38	Weight of Area 3	V3=	A3*γ (concrete)	
39	Weight of Area 3	V4=	A4*γ (soil)	
40	Weight of Area 4	V5=	A5*γ (soil)	
41	Weight of Area 5	ΣV=	V1+V2+V3+V4+V5	
42	Allowable Soil Bearing Pressure	gall=	qu/FS	1817.0388

37

	Determined Variable V		δ	25.267	degrees	fr	4836.985	
Φ, Φ,	37.900 degrees 0.661 radians		δ	0.441	radians	fc	0.000	
φ y (soil)	109.370 pcf		o'P	2288.567	nef	TC	0.000	
y (concrete)	150.000 pcf				hai	PP	5721.418	lbs/ft
y (normal CMU)	125.000 pcf		kP	4.185				
н	9.125 feet		В	10.000	feet	Fr	10558.403	
Df ka	5.000 feet 0.239		e	1.288	feet	Fd	4887.978	lbs/ft
α	0.000 degrees		B'	7.423		Tu	4007.570	103/10
α	0.000 radians		100			FSsliding	2.160	≥1.5
o'a	238.461 psf		β	25.49937075	degrees			
Pa	4887.978 lbs/ft		β	0.4450479768	radians	think and the second		all and
Pq (surcharge)	3800.000 lbs/ft		10.03		1995 - State State			
Pv	0.000 lbs/ft		qu	18486.560	psf	and a start of the	- la cha	ma ha
PH	4887.978 lbs/ft		qmax	1817.039	psf			
A1	4.845 ft^2		gmin	232.591	psf	100000000000000000000000000000000000000	- Kalendari - Sala	1.15
A3	15.000 ft^2				6316	- Arren are		124
A4	67.592 ft^2		q	546.850	pst			
		Moment arm	Fcd	1.118				
V1	605.632 lbs/ft	0.81770833 ft	Fyd	1.000				
V3	2250.000 lbs/ft	5 ft				and the second s		
V4 ΣV	7392.517 lbs/ft 10248.148 lbs/ft	5.56770833 ft	Fqd	1.116				
Mr	52904.606 lb-ft/ft		Fci=Fqi	0.514				-
Md	14867.599 lb-ft/ft		Fyi	0.107			- Itan	+ + 12 -
MN	38037.007 lb-ft/ft		100 C		-2			- Kita
FSoverturn	3,558 ≥3		FSbearing	10.174	25	E	Print and the second	